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ON UNIFORM LINEAR INVARIANT RELATIONS 
OF THE EQUATIONS OF DYNAMICS* 

A.S. SUMSATOV 

In a tangential stratification of the configuration manifold of a mechanical 
system, the submanifolds of its trajectories specified in local coordinates 
by equations that are linear and hcrnogeneous , with respect to velocities, 
are discussed. The local conditionsforthe existence of some of such 
submanifolds in a structural form are established. The results obtained 
are illustrated by examples taken from solid dynamics. 

1. Let qE R" be the Lagrangian coordinates of a holonomic mechanical system, T = 1/S 
(a (q) q’, q’) its kinetic energy, and F (q)E R" the generalized force. The equation of motion 
can be written in a form which can resolve in terms of accelerations, 

q.' = -pq., 9’) + F (1.1) 
or, when the velocity field q’ = f(q) is specified. 

(f, V) f = F (1.2) 
Here r(q) is the connectivity object (see /l/1, V denotes covariant differentiation, 

(E, rl) = EC)'; the repeating index is understood to mean summation from 1 to n. 

Definition. The relations 

'pl (4, 9') = 8, . . *t cpnl (9, !I’) = 0 (m Q 24 (I.31 
rank II acplaq, a(p/aq. (I = m 

form, in a certain domain of variation of the variables g and q’ an invariant ensemble for the 
system of differential equations q” = G (q,q’)E R*,if for each a = 1,,..,m the expression 

has the form 

(XW are the continuous functions). 
In the tangential destratification TM of the configuration manifold M of a mechanical 

system, Eqs.(1.3)define locally a certain submanifold. Under conditions (1.4), the integral 
curve of the equations of motion , which has a common point with this submanifold, lies on it, 
i.e. the given submanifold is integral. 

Let us consider the question of the existence,for Eqs.(l.l), of an ensemble of invariant 
relations of the form 

<%%- m+1r 0 = 0, . . ., <B, d> = 0 (m < n - 1) (1.5) 
where the vectors {L(q)} are linearly indepenent of each point, <g,q) = (aE,n). In doing so, 
we shall confine ourselves to studying two extreme cases: m=n--l and m=f. 

Theorem 1. Let F#O. An ensembleof the (n - I)-th invariant relations (1.5) exists if 
and only if the lines of force are geodesic lines of the Riemann manifold (M,(,>). For FI 0, 
the system has m* of such invariant ensembles. 

This theorem is a corollary of Theorem 3 proved below. For n=2, it is given in /2/. 
For F = grad U(q), the condition of the theorem is written analytically as 

*Prikl.Matem.Meklmn.,50,1,32-42,1986 
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(see /l/l. 
A,U = (grad U, d'grad U), a, = alad 

We note that in the case of (n -2) first linear integrals (general) in a holonomic 
system Theorem 1 give the necessary condition for the existence of one more linear integral 
or a single invariant relation <h, (q),f> = 0: 

dldt <L q’> = x (q, 9’) <a,,, q’> 0.7) 

Example 1. A solid rotates about a fixed point in a force field 

U =ZU+ UV+ nu +l/,e(A~* + B9 + Cd) 

which is the superposition of a uniform gravitational field and the Brun field /3/. Here A,B 
and C are the main moments of inertia of the body for the fixed point; (z,u,z) and (u,v,w) are 
the coordinates on the main axes of the centres of inertia of the body and of a unit vector 
of the vertical respectively, and B denotes a constant parameter. 

We have 

A~U=.a[u~-eu+e(B-C)M]*+ b[eu- zw -k e (C - A) ~101~ f c [ZD - YU $ e (A - B)uv]* 

(a = A-‘, b = B-‘, e = C-l). Thecondition (1.6) takes the form 

el.ua,(A,U)- a,uq (AIU)= 0 0.8) 

where $and p are any two of the threequantities U,U,W, and the third quantity is replaced by 
the expression +[i - (ql)*- (q2)2]Vg in U and A,U 

Setting $=u and ~P=u for U= v=O,m=l and crr=4 we find respectively from (1.8) 
Z# (b - a) [z + e (C - A - B)] = 0, +y (b - a) [I - e (C - A - B)l= 0 

whence it follows that the centre of mass of the body lies in the principal plane of the inertia 
ellipsoid constructed for the fixed point. 

For example, let Z= 0. It is convenient to take q’= v,qe=lo and the angle of precession 
as the generalized coordinates of the body. The condition (1.8) has the form of a polynomial 
in powers of u and w equal to zero 

L&lo - au + e (B - C) w] [(a - c) y’ + ((I - b) e* + 
(eu)’ (c - a) (B - A) (A + C - B) + @lo)* (b - a) (C - A) (A + 
B-C)+ym(c--a)(C+2A-B)+rlve(b-e)(B+2A-CC)]+ 
etv+e(B-A)vl[z+e(C-A) W] (b-c) (B + C-A) (1 - I?- u/+.0 

Therefore, all its coefficients should equal zero. A simple analysis of these identities 
shows that for e#O it is possible only when the body is dynamically symmetric, and for e=O 
if it is symmetric in two more cases: z= v= I= 0 (Euler's case), B(C-A)y*=C(A -B)r’, C< 

A<B or C>A>B (Hess' case). Ony in these cases do manifolds of trajectories exist, 
locally specified by two equations of the form (1.5). 

2. Consider the conditions under which Eq.(l.l) admits of the sole invariant relation 

0% (41, 4') = 0. Without loss of generality we assume that the vector 1, = (&,(r,...,&,,") is 

normalized, i.e. <%I, J.,> = 1. 
Together with the vector field h,(q) we can introduce a vector field h,(q),...,&,_,(q) so 

that at each point qE M the vectors Ir-,, . . ., A,, 
i = 1, . . .( n),where 6,, 

form the orthogonal n-hedron (h,,hl) =hij(i, 
is the Kronecker delta (see /2/). 

Let us recall the notation used in /2/. 

YhkI = <&, V) Ah, &> (h, k, 1 = 1, . . ., n) 

The invariants vhkl are skew-symmetric with respect to the first two indices: Yhk, = -ykhl. 
The independent invariants among these define the components of the angular velocity of the 
n-hedron's rotation with its origin moving along the integral lines of the vector field &,..., 

li, and are referred to as the Darboux-Ricci rotation coefficients. 
From Eq.(1.7), taking into account (1.11, we obtain 

<(q-v V L q’> + <L F> = n <L s’> (2.1) 
hence it follows that the factor x can be of the form (v (q),q’> only. Then the identity (2.1) 
leads to the equations 

<L F> = 0 (2.2) 
VJbvr + VrLia=VrLla + v,& (r,s= i,...,n) (2.3) 

Multiplying (2.3) successively by hi,%,, and performing a convolution with respect to the 
indices r and s, we obtain the equivalent equations in the invariant form 

hlJ + ,bJl = 6Jdi +  bzuJ (i. j = 1, . . ., n) (2.4) 
where the unknowns VI are replaced by (Ti = <v, hi). 

The analysis of these equations in general form is complicated. The case of n = 2 is 
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discussed in /2/. 
Let us consider the case when n = 3 under the condition that F# 0 in a certain domain 

D c M. Eqs.(2.2) and (2.4) yield 

YSll = Ysnr = 03 Ysa1 + Ys1r = 0, <a,, F> = 0 (2.5) 
The unknowns ur, a,, ug are determined from the remaining three equations of (2.4). 
In accordance with the last equality in (2.5), we select I, = F/(F,F>%. Then the vector 

of the curvature is z = (h,, V)h, = ph2. In fact, from (2.5) we have 

<aa, + = ~~~~ + <a,, 9 = (a,, v) <as, a,> = 0 
If p=O, the lines of force are geodesic and there exists an ensemble of two invariant 

relations of the form (1.5). This case was discussed in Sect.1. Let pf 0, then the vector 
fields h, and I, are mutually orthogonal , and this is exactly what is required. 

Thus, at each point of the domain DcM, where the curvature of a line of force is not 
zero, we can introduce, as shown above, an orthogonal trihedron h,,&,h, = hl j( &. We shall 
call it a K-trihedron. 

Theorem 2. In an open domain on the configuration manifold, at whose points a K-trihedron 
is defined, the sole invariant homogeneous linear relation of a holonomic system exists if 
and only if the coefficients of the trihedron's rotation satisfy the conditions 

YSll = 0, Yam + Yam = 0 (2.6) 

In this case the invariant relation has the form 

det IIF, rl, ~'11 = 0 (11 = (F, g) F) 
Conditions (2.6) have a clear geometrical meaning. The first equation in (2.6) means that 

the vector of curvature of the integral lines in the field & is orthogonal to the vector h,. 
The second equation shows that the integral curves of the fields hr and & form an ensemble 
which (in the sense of /2/) is canonical with respect to the integral curves of the field ha. 
It is well-known (see /4/) that both of these conditions are necessary for the integral curves 
of the field h, to be the trajectories of the group of motions of Riemann's manifold (M,<,)) 
of the system. 

Let n>l be an arbitrary natural number, and the right-hand parts of the equation of 
motion (1.1) contain, apart from the position forces F(g) the gyroscopic forces Qq’, where 

Q (g) is an arbitrary two-order skew-symmetric tensor. 
For the existence of an ensemble of invariant relations (1.5) when m = n- 1 and m=f 

it is necessary that 

61% = 0, p = n - rnt&, (2.7) 
In fact, computing the total derivative of (1.5) with respect to time alongthe system's 

trajectory, we obtain 

dq’r V) Aa, 0 + <ha. Rq’ + F> = i y-&jag, q’> 

(I = n - In; a = 1+ I,. . ., n) E-r+1 
(2.8) 

Consequently, the multipliers xaR can be of the form tva8 (q),q’,-&Ecrs(q) only. Therefore, 
theidentities (2.8) yield, in particular, 

or, in the equivalent form, 

cnli,, hi> = 5 e 6 &3,+1 aBBt (a=Z+i,...,n; i=i,...,n) 

(the vectors An....&, constitute an orthogonal n-hedron). The conditions (2.7) follow from 
the above. 

As a consequence we obtain that: 
a) in systems with two degrees of freedom, for 62 #O no invariant relations of the 

type discussed exist; 
b) for F#O, the assertion of Theorem 1 completed by the condition QF = 0 remains 

valid; 
c) since a definite pseudovector o corresponds to an arbitrary skew-symmetric 3x 3 

matrix 61 (see /l/J, in systems with three de,grees of freedom, for B#O the desired 
invariant relation can be of the form <a, q’> = 0 only. 

3. We shall now consider non-holonomic systems with the ideal linear constraints (1.5). 
Without loss of generality, we assume that the vectors hl+l,...,h, are unit vectors, and 
they are mutually orthogonal in the metrics which are defined by the system's kinetic energy. 
We will write the equations of motion in the formcontaining the multipliers b of the con- 
straints 
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(3.1) 

From Eqs.(l.S) and (3.1) we find 

Ir, = -<(Q', V) b, 4') - <hcG, F> (a = If 1, . - -9 n) 
Substitution of the expressions obtained Eeduces the equations of motion to the form 

q” = - (rq’, d) - z+, kz <Raq’s q’> + Q 
n 

(3.2) 

Each layer of the manifold T,M can be expanded in a direct sum of two linear vector 
subspaces, one of which X,,,(q), is extended over the vectors &,...,A,. The second subspace 
Yl(q) is of dimensions I, which equals the number of degrees of freedom of the system. We 
shall refer to it as a subspace of possible velocities for a specified point qE M. The 
positional force Q(q)eR” on the right-hand side of (3.2) is a projection of the applied 
force F (q) on the space Yl (q). The component of force P, equal to F-Q, is "quenched" by 
the reaction of the ideal constraints (1.3). The sum on the right in (3.2) is a reaction of 
the constraints when no outside active forces affect the system. 

Notice that relations (1.5) are the first integrals ofEqs.(3.2) withzero integration 
constants. Let us consider the conditions under which there also exist for (3.2) kinvariant 
relations of the form 

<tV+l, q'> = 0, . . ., <h2, q’> = 0 (1 G k G 2 - 1) (3.3) 
where vectors &+I (q), . . ., 4 (q) are linearly independent at the points qE M.. Without loss 
of generality we can assume that the vectors hr_Btl,...,h,, il+lr...,J.,, are unit vectors and are 
mutually orthogonal. Still selecting appropriately 1- k regular vector fields 1, (9), . . ., 
al+ (g), we arrive at a family of orthogonal n-hedrons at the points qEM. 

In accordance with the definitionin. Sect.1, relations (1.5) and (3.3) constitute an 
invariant ensemble for the non-holonomic system discussed, if 

xGLec7,qm.,9*) (a=~----++1,...,4 (3.4) 
D=I-t+l 

where the generalized accelerations on the left-hand sides are replaced in accordance with 
(3.2). 

It follows from the identities (3.4) that 

Multiplying (3.5) successively by h,,'h,, and performing a convolution with respect to 

<L,Q>=O (a=l--k+l,..., I; r,s=l,..., n) (3.6) 

the indices I and s, in invariant form we obtain the equations 

(a=l-k+l,..., 1; i,j=l,.,., n) 

which are equivalent to Eqs.(3.5). In the above formula, the unknown vectors v~rfl are replaced 
by the scalars acres = bgr w. 

We will now consider the following special cases: 
1) k-l - 1, l>l is an arbitrary natural number; 
2) k = 1,1 = 3, and Q# 0 in a certain domain D E M. 
In the first case EqS. (3.7)yield 

VP11 = * * * = Yru = 9 (3.8) 
The remaining Eqs.(3.7) considered as algebraic equations with unknown cabi are obviously 

independent. 
In addition, it follows from conditions (3.6) that the vector fields hl and Qarecollinear. 
Allowing for the geometrical sense of conditions (3.8), we formulate the following theorem. 

Theorem 3. Let Q#O in a certain domain DC M. The non-holonomic system with n- 
m>i degrees of freedom, restricted by the ideal linear constraints, possesses in domain 
D an invariant ensemble of n-1 relations which are linear and homogeneous with repect to 
the velocities, when and only when at each point qsD the vector of curvature z(q) of the 
integral curve of the field Q, which passes through this point, is orthogonal to the subspace 
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of the possible velocities Y,,-,(q). For Q = 0, systems with two degrees of freedom always 
have such an invariant ensemble. 

The last assertion of this theorem is obvious since its sole condition y,ll = 0 can be 
satisfied by an approprj?ie choice of the function (p(q) in the expression h= e1 (q) co9 cp + 

es (d sin cp, where the vectc-s e1 and e4 form any orthogonal basis of the subspace Y, (d at 
each point qE D 

Notice that when Eqs.(l.S)are fully integrable, Theorem 1 follows from Theorem 3. This 
is the result of the definition of a geodesic line contained in Riemann's manifold of the 
system (see /l/j. 

Consider the case where k = 1, I = 3. Eqs . (3.7) yield ysll = yaaa= 0, ~~12 -I ~~21 = 0. The 
remaining equations of (3.7) are used to determine the unknowns cagi. 

Let us write h1 = Q/(Q,Q)":. The vector of curvature is 

(hll V) A, = = (d + I (!?) (s E x,-s, Y E Y,) 
When g(q)= & a non-homonomic system has two relations of the form (3.3) which, together 

with the constraint equations, constitute the invariant ensemble (see Theorem 3). 

let r/(q)+0 in a certain domain D,cD. Then, connecting to the specified vector 

fields h,, . . ..A., of the constraint Eqs.(l.s)three more vector fields 

11, hn=YI(Y, Y)“*, h8 = (Eiij.,.raJhr,j. . . ~~,~~&J 

(8 
is the n-valence fundamental Ricci and Levi-Civita tensor, see /S/j, we obtain at each 

point qED1 an orthogonal n-hedron which we shall call a key n-hedron. In this case the 
conditions (3.6) and ysll = 0 are satisfied automatically: 

(Q, A,) = 0, YSII = -_(&I, V h, W = - <z + Y, &> = 0 
Theorem 4. In an open domain in the n-dimensional configuration manifold at whose points 

the key orthogonal n-hedron is defined, the non-holonomic system with three degrees of freedom 
and withconstraints (1.5) possesses an invariant ensemble of (n- 2) relations that are uniform 
and linear with respect to the velocities, if and only if the rotation coefficients of the 
n-hedron satisfy the conditions 

YSBI = 0, Ysm + Yan1 = 0 (3.9) 

This ensemble is formed by the inequalities (1.5) and the relation 

detll Q, q, b, . . ., A,, q'll = 0 01 = (Q, V) 0) 
4. As mentioned above, each particular solution of the differentialEqs.(3.2) lies on 

the submanifold given by the equations <hl+l, q’) = c!+~, . . ., (a, q’> = c,,, where cl+,, . . ., c,, are 
constants, and l=n-m. Iiowever, only those solutions which occupy the submanifold (1.5) 
correspond to the actual motion of the system. Therefore, in determining the whole multiplicity 
of the motions of a mechanical system with the constraints (1.5) we must search not for the 
first integrals ofEqs.(3.2) but for the relations cp (q,q’) = const, for which the derivative 

-$=(+(I’)+($-, - (rq-, rl’) - f: aa <fLq’t q’> + Q) 
a=d+1 

has the form 

(4-f) 

(% are any continuous functions). 
It may happen that the relation 

P (d <hz, n'> = const (P f 0) 

of the above-mentioned nature, corresponds to the relation <h,, q’> = 0 which together with 

Eq.(l.S) forms an invariant ensemble (see the definition in SeCt.1) for the equations of 

motion (3.2). Then, on substituting cp = p(l.,,q’>, into (4.1), we find as in Sect.3 that 

xR=<vg(Q)* d> (B=1+&...,s) 

<gradP, Ai) 6,j + <gradP, hj> 6~ f P(Yaj + Ylji)= (4.2) 

<iv Q> = 0 (4.3) 

For i,j- 1,...,1--1, Eqs.(4.2) and (4.3) are satisfied automatically since (see above) 
the relation <hl, q’> = 0 forms with (1.5) an invariant ensemble. For i = 1, . . ., n; j = 1 + i, . . ., n 
the inequalities (4.2) can serve to find the unknown scalars cet = <ve,h,>. Then there remain 

the equations (6 = In p-l) 
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<grad 8, lb> = YI~I (a = 1, . . . . 1) (4.4) 
which for I = I,..., 1;f = 2 follow from (4.2). 

Eqs.(l.l)are of the ‘first order in the unknown function fJ (!7). The compatibility of 
such equations can be investigated by the usual methods (/6/). 

Thus, the following assertion is proved: for the existence in domain DC M of a non- 
zero vector field E (q)E Y,(q) such that any particular solution q(t)ED of Eqs.(3.2), 
which corresponds to the actual motion of the system , satisfies in domain D the relation 

<El g'> = <E, !7'> h=L. 
it is necessary and sufficient that the constraint Eqs.(1.5)and (h,, q*> =O 09 = EKE, W) 
for (3.2) constitute an invariant compatibility in the sense of the definition in Sect.1, and 
the system of Eqs.(4_4)is compatible with respect to the function 8 = -I/* In <&, &>. 

We note that on the right in Eqs.(4.4)we have the components of the projection of the 
vector of curvature z1 = ylilhl of the integral line of the field hl in the subspace of possible 
velocities. 

In the case of holonomic systems with n degrees of freedom, the first integral (general) 

P (9) <h,, q*> = censt of the equations of motion (1.1) may correspond to the sole invariant 
relation &,, q*> = 0 Arguing as in Sect.2 we can show that in this case the unknown function 

P (9) is determined from the system of equations 

<sad ~9 &> + PYmin = 0 (1 = 1,. .a* s) 
which means that the vector of curvature of the integral line of the field A,, should be a 
gradient. 

Example 2. A solid rotates about a fixed point in the uniform gravitational field 

U=fU+yV+llD (*+#'+r'#o) 

the body motion being subject to the ideal non-holononic constraint 

Pel+ Pn + % = O (4.5) 
where (p,q,r) are the components of the instantaneous angular velocity e of the body along the 
principal axes of inertia constructed for the fixed point, and (e,,etrel) are the components 
along these axes of a certain direction e which is fixed in the body, 

Wi)' + (e3' + (s)' = 1 4.8) 

For the other notation see, for example, /l/. The body weight is assumed to be equal to 
unity. Two different methods for realizing constrain (4.5) are given in /7, 8/. 

The system under consideration has two degrees of freedom. Let us clarify whether a 
relation of the following form exists: 

cclP+cyI+%r=O (4.7) 
which would, teogether with (4.5), constitute an invariant ensemble. Here CL, are any functions 
of the generalized coordinates of the system, e.g. ofthe Euler angles. 

It is convenient to conduct further calculation in non-holonomic local coordinates d#ll= 
pdt, df3’ = qdt. dp’ = rdt. The metrics generated by the kinetic energy of the system (ignoring the 
non-holonomic constraint) is 

drr = A (dfi’)’ + B (df+’ + C (djl’)l (4.5) 
Let us agree to denote the scalar product in this metric by (J and in the Euclidean metric by 
(9). 

The covector of the active force Q has the components 

We denote by Q= P- tP, c)/E, where fl= (e,e) = o(el)* + b(e,)* $ c(e,)*, the projection of the 
force F on the subspace of possible velocities at each point of the configuration manifold 
SO@) of the system. 

Consider the vector L=(Q, V)Q equal to (Q,QN+J& where r is the curvature vector of 
the field line Q,&=Q/cQ,Q> vs. and n is a certain scalar function. Since @,Q) = t&,F x a) = 0, 
in conformity with Theorem 3, for an invariant ensemble (4.5), (4.7) to exist it is necessary 
and sufficient that the sole condition 

o,F x e> = 0 (4.9) 
be satisfied. 

To find the covariant components of the vector L generated by the field Q, while 
omitting the CumberSOme calculations of the$constraint coefficients of the Riemann manifold, 
it is worth noting that the left-hand sides of the dynamic Euler equations represent the 
components of a similar-covector generated by the angular velocity field, (P,(I,~)=((o~,&, a?)= 
@'I, fi'*, pa). For example, /9/ 

A".'+(C-S)&&4$ "'+(C-B)0'3=(o, V)Ol 
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Direct calculations show that condition (4.9) has the form of a 
polynomial equal to zero, with respect to the direction cosines u v 
which are connected by the single relation 

u*+v'+rc"=i 

Consequently, allowing for all possible absolute values and the 

homogeneous third-degree 
and ~of the vertical, 

(4.10) 

combinations of the signs 
of U_V and ~,which satisfy the identity (4.10), all the coefficientsof this manifold should 
be zero. This condition adds to (4.6) ten more equations in the-parameters z,u,L,A,B,C,C,,~~,~~ 
of the system 

G I~*~,ce~ + YZ (cb - aq) - y~be,cccJ + J (y’e6 + Zyrb+, + zabq) - 0 (4.11) 

G IW - z') m+a f 2&a &es - gac,) + 21 (brl - cb)l _t 
21 (z%e,bc~ - zxbe,ce,'- y~nelces - xrc6) + I (pee6 + lyrba&e# f 

{4.iZ) 

z%t))=O 

G [(I/' - 2') ac,be, + 22% (Kael - zW + .W PV - 41 + 
21 (Puce, - Uaac,bcl--ryba,ct, - $14) +a (&f + 

(4.13) 

Byrbe&c* + s%i$ = 0 

GW - I*) aE + (2' - zp) by) + (z' - go) ~$1 + 2J (.@besee, - 
ryac,cc, - zza+, - usa&) + 21 (ypac,ca, - y~at@e, - rybe,ce,- 

(4.14) 

ZZbrJ + 2N (i?oc&* - X%&cC~ - yWf,ce*- tj& = 0 

Here 

G=xq+yqf~e~, I=yea 1-m --es 1-m 
( ") i "1 

r=u,(i-+j-%e,(i_g, N=xe,(l-A)-ye,(l--+) 

E-E’- a (el)s, q = E* - b (e#, E = Es -- c (as)* 

The remaining six equations are obtained from (4.11)) (4.12) and (4.13) by the cyclic 
rearrangement a~b~c~a,a~y-z-t,cl-el-es-e,. As a conseqnence we have G-0, J-r I-+N- 

1, E-q- 5-E. 
The equations obtained connect the system's parameters and admit of the solution 

r b I 
e,(E*-a) = e,(Ee-b) = ee(E*-cc) (4.15) 

Obviously, these formulae lose their meaning only in the case where the covector e is 
directed along one of the principal axes of the body’s inertia, constructed for the fixed point. 

Let us examine this case. Suppose, for example, that el=q=O,e,= 1. Then G= P,J= I= 
fl = 0. Eq.(4.11) yields yzebc = 0. 

If z#O, then taking into account the Eq.(4.12) +z%c= 0 it is necessary that z=y= 0. 
Then from the equation (4.14) a* (b- a)<= 0 we obtain that A = B. This is the Lagrange case. 
The constraint (4.5) does not exert any influence on the body: it only limits the initial 
conditions of its motions, /lo/. 

If z=o, we have one more general case ofthe integrability of the non-holonomic system 
In question, found by Kharlarnova, /ll/. In this case the equations of motion admit of the 
first integral of Apx+Bqy=const (for ecample, the equations in tie Voronets form). 

We will further assume that the covector e is not collinear with any of the principal 
directions of the energy tensor which refers to the fixed point of the body. Thus, if the 
body centre of mass is situated on an axis with the direction vector 

h, = lel (E2 - a)/m,, e2 (Ea - b)im*, e3 (IF - e)lm,l 
((m# = A IQ (ES - u)IS + B le, (Ep - b)P + C 1% (-@ - e)l*) 

then a relation of the form (4.7) exists, which together with the constraint Eq.(4.5) forms 
an invariant ensemble for the equations of motion with a multiplier. Here the vectors X,= e 
and &= Q/{Q,QjVa have the components 

h, = (ne,/E, be,/E, ce,/E) 
1, = [e,c, (B - C)/n,, eSel (C - A)lm,, elep (A - B)/mJ 

((ml)* = A [c,e, (3 - C)l' + B [e,e, (C - A)P f C [e,e, (A - ~9))‘) 

In conformity with what we said in Sect.3, the coefficients of relation (4.7) should be 
proportional to the components of the covector which is orthogonal to the vectors e and F. 
Since n=3, relation (4.7) is fully defined by #is condition, and can be written as 

Ae, (ES - a)p + Be, (E* - b) q + Ce, (P - G) T = 0 (4.16) 

or, using (4.5), 
Ape, + Eqe, + Cree = 0 (4.17) 

Eqs.(4.5) and (4.17) mean that 
p/h1 ,I = q/h, i = r/k1 ,s (4.18) 

i.e. in the corresponding motion of the system thediectionsof the angular velocity and 
kinetic moment are fixed in the body. 
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Let us find whether the function p(~,u,w)#O can be selected so that 

4krt IP (Ape* f Bqc,f Cr+)I = (PQ + qe, + f%lX 
In our case;Eqs.(4.4) have the form 

where 

With #is assumption regarding the direction of the vector e, the constant Y~_++o is 
different from zero. 

Constructing the Poisson bracket (XIX,- XIX1)e= 0, we obtain 

(x,e =) -$ A,/ = 0 

(439) 

(4.20) 

Constructing the second bracket (&XI- XIX,)@= 0, we find that X,9= 0. This proves the 
inconsistency of the system of Eqs.(4.19)and (4.20). 

It is interesting that in the given problem with a non-holonomic constraint in all three 
cases (i.e. of Lagrange, of that discussed in /ll/, and of that considered above) the additional 
integral is a surface integral, and at the same time in the second and third cases it is a 
generalized surface integral (see /lZ/), but in our case it is the particular integral (4.17). 

We shall prove that in other cases the invariant ensemble (4.5), (4.7) does not exist. 
In accordance with the argument above, this assertion remains to be proved when covector e 
does not coincide with the principal axis of inertia at the fixed Point. Let us reformulate 
Theorem 3 as follows: for the existence of the invariant ensemble it is necessary and sufficient 
that the integral curves of the vector field Q are the solution of Eq.(3.2) when Q=O. 

In the absence of outside active forces, the body, restricted by the non-holonomic 
constraint (4.5)) rotates with angular velocity 17, 8/ 

P=-&uthu(Xt+k)-&. &&+*) 

x'= E' [A (a)'+- S (e.)'+ C (es)] - 1 arthcasa 
E'ABC , k=- u 

(the constants v and a are the initial velocity and the angle between the intial direction 
ofthevelocity and the vector --b, respectively). 

The vectors Q and P(t) should be collinear at each instant of time; Q is the linear 
vector-function of the variables ~(t),~(t) and w(t) which are the solution of the Poisson 
equations a'+ Q X a = 0, II = (u. U, w). Since at a fixed instant of time the vector n can have an 
arbitrary direction in the body, the collinearity condition yields 

z 2 
n,+,- rt$+ = S2& :S;r,a = %%- o*1 

Clearly, when a#0 the relations obtained are contradictory. For a=0 they are 
identical with (4.15). This proves the assertion. 

In /13/, the generalization of the problem for a heavy gyrostat was discussed. Assuming 
that there exists an invariant relation of the form ol= o,@(=const), where et is the projection 
of the angular velocity on the direction OL fixed in the body, .a Cartesian coordinate system 
U&E, wasintroducedin/l3/inwhich the non-holonomicconstraint (4.5) isdescribedbythe equation 
o* = 0, and the following conditions were obtained for the existence of the invariant relation 
above: 

&o%-/-t=o 1(41i) 

A,* = 0, 2, = 0, A,&, f A& = o (4-Z) 

Here, lj are the components of the body centre of mass along the axes G&Es I the constant 
L is the projection of the gyrostatic moment on the Ok, axis and A,, are the corresponding 
moments of inertia of the body for the fixed point. 

If A,=O, we have an integrable case, /ll/. Let A,+O. Obviously, the conditions above 
do not impose any limitations on the body's inertia tensor and the three conditions (4.22) are 
equivalent to two relations (4.15). In fact, the first condition of (4.22) unambiguously 
defines the direction hx of the O& axis, but then the remaining two conditions are identical 
with (4.15), with ASI = IllI V.,, &I)"'. 

For a body with centre of mass located on the axis' (4.15), the equations of motion are 
integrated under the initial conditions Oar= - L/A,, in elliptic time functions. When L=O, 
the corresponding motions of the body belong to the class of precessions of general form. 
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ON THE STABILITY OF STATIONARY MOTIONS 
OF NON-CONSERVATIVE MECHANICAL SYSTEMS* 

A.V. KARAPETYAN and V.N. RUBANOVSKII 

The problem of the stability of stationary motions (SM) of mechanical 
systems admitting of first integrals and a function that does not grow 
along the motions is considered. Theorems are proposed on the stability 
and asymptotic stability in parts of the variables, as well as on the 
instability of the SM of such systems. The general situations are 
illustrated with an example of the motion of a heavy inhomogeneous sphere 
over a plane with friction. 

1. We consider a scleronomic mechanical system that admits of time-independent first 
integrals U1 (z) = cl, . . . . U, (x) = Q, and a time-independent function uo (s) that does not grow 
along the system motions. 

We assume that the functions U,(z), LJ1(z),.. ., U, (2) are continuously differentiable 
with respect to the variables m = (a,...,~) therein. All or certain generalized coordinates 
and velocities or momenta of the system, quasicoordinates, certain functions of these quantities 
etc., can be these variables. 

Theorem 1. If a function U,(x) that does not grow along the system motions has a strict 
local minimum for constant values of the integrals U,(z) = c,(i = 1, . . ..k) of this system, 
then the valuesofthe variables making this function a minimum correspond to the stable real 
motion of the system (this motion is usually called stationary). 

Theorem 2. If the stationary motion (SM) makes the function V,(z) a strict local 
minimum and is isolated for constant values of the integrals ut (z) = cl(i = 1, . . .,k) of the 
motions along which the function U,(z) remains constant, then every perturbed motion that 
is sufficiently close to the unperturbed motion will tend asmyptotically as t+oo to one of 
the system SM, the corresponding strict local minimum of the function V,(r) for perturbed 


